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An increase in the number of images and their average size is the general trend nowadays. This increase leads to certain problems 
with data storage and transfer via communication lines. A common way to solve this problem is to apply lossy compression that  
provides sufficiently larger compression ratios compared to lossless compression approaches. However, lossy compression has 
several peculiarities, especially if a compressed image is corrupted by quite intensive noise. First, a specific noise-filtering effect is 
observed. Second, an optimal operational point (OOP) might exist where the quality of a compressed image is closer to the 
corresponding noise-free image than the quality of the original image according to a chosen quality metric. In this case, it is worth 
compressing this image in the OOP or its closest neighborhood. These peculiarities have been earlier studied and their positive 
impact on image quality improvement has been demonstrated. Filtering of noisy images due to lossy compression is not perfect. 

Because of this, it is worth checking can additional quality improvement be reached using such an approach as post-filtering. In this 
study, we attempt to answer the questions: “is it worth to post-filter an image after lossy compression, especially in OOP’s 
neighborhood? And what benefit can it bring in the sense of image quality?”. The study is carried out for better portable graphics 
(BPG) coder and the DCT-based filter focusing mainly on one-component (grayscale) images. The quality of images is characterized 
by several metrics such as PSNR, PSNR-HVS-M, and FSIM. Possible image quality increasing via post-filtering is demonstrated and 
the recommendations for filter parameter setting are given.  
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1. Introduction 

 

The technology of sensors’ design and manufacturing 

has been rapidly developing in recent years (Mehmood 

et al., 2022 and Bazi et al., 2022). That has led not only 

to the better spatial resolution of images but also 

considerable size increase of acquired images (Ma et al., 

2015). In addition, it has become popular to get multiple 

images of the same terrain, which has resulted in even 
greater problems in the transmission and storage of 

information data (Schowengerdt et al., 2007 and Blanes 

et al., 2014). A common way to solve this problem is to 

apply some image compression techniques. 

In general, the use of lossless and lossy compression 

approaches is possible (Hussain et al., 2018). An 

advantage of lossless compression is that it introduces no 

distortions into data. However, the compression ratio 

(CR) attained by lossless compression techniques is 

often too small (not appropriate for many applications), 

especially for images corrupted by noise. Lossy 
compression allows for reaching larger and variable CR 

values. Meanwhile, a larger CR results in larger 

distortions introduced (Ponomarenko et al., 2005). Then, 

a reasonable trade-off has to be found and provided 

(Christophe et al., 2011). 
 

__________ 
*E-mail: b.kovalenko@khai.edu 

 

It is worth stressing that compression should not be 

only intended on reaching this trade-off, but it also has to 

take into account the peculiarities of images and possible 

noise presence (Penna et al., 2007 and Kovalenko et al., 

2021). This is due to the fact that, in practice, it is hard to 

find images without noise (although this noise can be 
invisible for low intensities), especially in remote 

sensing (RS) images that are often corrupted by a rather 

intensive noise. 

In the case one wants to provide a high quality of 

lossy compressed noisy images with a simultaneous 

desire to have a sufficiently high CR, compression in the 

so-called optimal operation point (OOP) can be a 

prominent solution. OOP is such a parameter of a coder 

that provides the minimal difference (according to some 

quality metric) between the compressed and noise-free 

image. Previously, we have demonstrated the benefits of 

using the OOP parameter in the lossy compression of 
noisy images. In many cases, it worked well and showed 

good results in terms of improving image quality 

(Kovalenko et al., 2022).  

For some applications, it is necessary to provide even 

better quality. Then, such an approach as compressed 

image post-filtering can be applied (Simmer et al., 

2001). By post-filtering, we mean that some denoising 

technique (in our case, it is the DCT-based filter) is 

applied after the compression of a noisy image in the 

OOP neighborhood. Although lossy compression of the 
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noisy image in this case already provides quality 

improvement (if OOP exists), it is reasonable to check 

can the post-filtering with properly adjusted parameters 

further improve the quality and how large that 

improvement can be. A side task is also the optimal or 

quasi-optimal setting of the post-filter parameters.  

This paper concentrates on post-filtering by the DCT-

based filter (Ponomarenko et al., 2011) of noisy 
grayscale images after lossy compression by BPG (better 

portable graphics) coder (Bellard et al., 2018). To 

estimate the improvement in image quality, such 

quantitative criteria as peak signal-to-noise ratio  

(PSNR) and visual quality metrics PSNR–HVS–M 

(Ponomarenko et al., 2007) and FSIM (Zhang et al., 

2011) are employed. 

 

2. Experiment setup 

 

2.1. Image/noise properties and the used metrics  

As test images, two typical representatives of remote 
sensing data have been taken – these are images Frisco 

and fr03 presented in Fig. 1. The first image is an 

example of simple structure images whilst the second 

one relates to middle complexity images. As has been 

mentioned in Introduction, in practice it is difficult to 

acquire noise-free images, especially RS ones. Noise can 

appear in images due to many factors; it can be visible or 

invisible (Chatterjee et al., 2010). Visible noise has an 

essential impact on image visual quality and 

classification accuracy. That is why, we concentrate here 

on the case of visible noise typical, e.g., for images 
acquired in bad illumination conditions. 
 

   
a                                                  b 

 

Fig. 1. Used test images Frisco (a), fr03 (b) 

 
In this work, we consider additive white Gaussian 

noise (AWGN), which is known to be the simplest noise 

model and can be a good starting point in research. 

According to this model, one has 

,n true
ij ij ijI I n                             (1) 

where 
n
ijI  denotes the noisy ij-th pixel value, 

true
ijI  is the 

true ij-th pixel value, nij is the value of AWGN having 

zero mean and variance σ2. Below we assume that noise 

variance is already known or accurately pre-estimated 

(Colom et al., 2014 and Selva et al., 2021).  

To estimate the quality of noisy or processed images, 

one can use various metrics. One of the conventional 

metrics is the peak signal-to-noise ratio (PSNR) 

calculated for the original (noisy) image as 
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where I, J define image dimensions and it is supposed 

that the image is represented as 8-bit data. 

It is also useful to estimate the image quality by some 

metric that takes into account the human visual system 

(HVS) and peculiarities of image understanding based 

on its low-level features. These can be, e.g., the visual 

quality metrics PSNR–HVS–M (Ponomarenko et al., 

2007) or FSIM (Zhang et al., 2011). In particular,  
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where MSE–HVS–M n is calculated in a set of 8x8 pixel 

blocks considering different sensitivity of HVS to 

distortions in different spatial frequencies as well as the 

masking effect (Ponomarenko et al., 2007). 

Feature-SIMilarity (FSIM) is designed for grayscale 

images (or the luminance components of color images) 

and it represents the HVS-based metrics as well (Zhang 

et al., 2011). The underlying principle of FSIM is that 

HVS perceives an image mainly based on its salient low-

level features. Specifically, two kinds of features, phase 

congruency (PC) and gradient magnitude, are used in 

FSIM, and they take into account complementary aspects 
of the image’s visual quality. The PC value is employed 

to weigh the contribution of each point to the overall 

similarity of the two images. 

 

2.2. Used coder and filter 

In our study, we use the BPG encoder that aims to 

replace the old JPEG format due to considerably better 

performance in the sense of higher quality and/or lower 

size of compressed data. This encoder has established 

itself as the one able to deal with most chroma formats 

(grayscale, YCbCr 4:2:0, 4:2:2, 4:4:4) and it has also 
proved to have OOP in the case of lossy compression for 

each of these formats (Kovalenko et al., 2022). These 

facts make this encoder extremely suitable for our 

purposes. Also note that the BPG encoder is simple to 

use – it has compression controlling parameter (CCP) Q, 

used internally to control the compression ratio and 

image quality. Q can vary in the range of 1 to 51 

(Bellard et al., 2018) where larger Q results in a higher 

CR and corresponds to lower visual quality (in the case 

of compressing the noise-free images). 

As was also mentioned, this paper focuses on the 

DCT-based filter that has been chosen based on several 
reasons. First, the DCT-based filters possess efficiency 

close to the best existing filters according to PSNR 

(Lukin et al., 2011). Second, they are characterized by 

efficient noise suppression in homogeneous image 

regions, excellent texture preservation, and good 

preservation of edges and details. Third, they can be 

easily adapted to signal-dependent and spatially 

correlated noise (Fevralev et al., 2011). Fourth, filter 

properties can be easily controlled and varied by a single 

parameter β used in threshold setting. 

To get a better understanding of these properties, let 
us briefly remind the basic principles of DCT-based 
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filtering. Denoising can be carried out in non-

overlapping or overlapping blocks of, generally, 

arbitrary size and shape (Foi et al., 2007). Below, for 

simplicity and for providing high computational 

efficiency, we consider only the case of fixed 8x8 

blocks. Direct DCT is carried out in each block. Then, a 

thresholding operation is applied to DCT coefficients 

except for the DC ones. Inverse DCT is then performed 
in blocks. Soft, hard, and combined thresholding can be 

used. Here, we apply hard thresholding and full 

overlapping of blocks. For optimal denoising according 

to PSNR, β should be about 2.7 whilst for providing  

the optimal visual quality it has to be slightly smaller, 

about 2.4 (Ponomarenko et al, 2011).   

 

2.3. Fundamentals of lossy compression in OOP 

Because this study aims to analyze the potential of 

post-filtering the noisy images that have been 

compressed in a lossy manner, it is reasonable to remind 

the main peculiarities of this type of compression. It has 
been already mentioned that, due to lossy compression, it 

is possible to reach an optimal operational point (if it 

exists), the ways to do this were described in our 

previous work (Kovalenko et al., 2022). To illustrate the 

phenomenon of OOP, the following method can be 

applied: in simulations, when one has a noise-free image, 

he/she adds AWGN to it, and applies lossy compression. 

Then, it is possible to calculate metrics for the whole 

range of Q values between a compressed image and the 

corresponding noise-free one. Examples of such 

dependencies on Q for six test images are presented in 
Fig. 2. OOP exists for five out of six images according to 

PSNR and only for one image according to the metric 

PSNR–HVS–M. There are cases when the metric 

steadily becomes worse (reduces) if Q increases. Then, 

OOP does not exist and it is necessary to understand 

what happens with compressed image post-filtering in 

such situations.   
 

  
                           a                                                  b 
Fig. 2. Dependencies PSNR(Q) (a) and PSNR–HVS–M (Q) (b) 

for noise variance equal to 100 

 

   
                         a                                                b 

Fig. 3. Comparison between noisy (a) image and the image 
compressed in OOP (b) 

The difference in quality can be noticed by 

comparing the noisy image and the one compressed in 

OOP placed side by side in Fig. 3. The filtering effect, 

which was mentioned earlier, is clearly visible, 

especially in homogeneous regions of the image. From 

Fig. 2, it can be seen that the improvement in quality is 

observed not only directly in the OOP, but also in its 

neighborhood.  
 

3. Results of post-filtering after lossy compression in 

OOP and its neighborhood  

 

3.1. Assessment using the PSNR metric  

The noise-free image was corrupted by the noise with 

a variance equal to 100, which is a good starting point 

for further research; after this, the noisy image was 

compressed by the BPG coder with Q in the limits from 

24 to 35 (Q can be only an integer, Q = 24 corresponds 

to the case when the distortions due to lossy compression 

are invisible). After decompression, each of the obtained 
images was filtered by the DCT-filter with several values 

of β. Thus, let us analyze the compressed image quality 

after filtering using the PSNR metric. The obtained 

dependencies are presented in Fig. 4 for three values  

of Q. 

Recall here that Q = 24 corresponds to visually 

lossless compression, Q = 30 relates to slightly visible 

distortions and Q = 35 is the (possible) OOP (see the 

plots in Fig. 2). Let us start our analysis with the Frisco 

image. From the obtained curves, it can be seen that 

there is a clear increase in quality for Q equal to 24 
(Fig. 4, a, PSNR after just compression was about 28 dB, 

Fig. 2, a). The maximum PSNR (37.4 dB) for this case is 

at β = 2.8, after which the overall image quality starts to 

decrease monotonically, but it is still better compared to 

compressed but not post-filtered one. The next case is 

Q = 30 (Fig. 4, c) that is a little closer to OOP (although 

PSNR after compression is still about 28 dB, Fig. 2, a). 

The overall situation is still the same except for slightly 

smaller values of optimal β and the value of PSNR for it. 

The most interesting situation deals with post-filtering 

after compression in OOP (Fig. 4, e) where the 
compressed image quality (PSNR is about 35.5 dB) is 

already increased compared to the noisy one. Even in 

this case, the post-filtering can offer the quality increase 

with maximum PSNR = 36.7 dB for β = 2. But it is 

important to note that further increasing of β can lead to 

decreasing the overall image quality compared to the 

non-filtered one. In other words, β = 2 allows to avoid 

oversmoothing. The reason for decreasing optimal β for 

larger Q can be explained in another way. In fact, the 

post-filter has to remove the residual noise having the 

variance that is smaller than the variance of the original 

noise. Then, a smaller threshold is needed for the DCT-
based filter, and this is achieved by setting a smaller β. 

Mainly, the same tendencies are valid for the fr03 

image. Note that, for this image, the OOP according to 

PSNR is much less obvious (PSNR is about 28.7 dB, 

Fig. 2, a). The improvement due to post-filtering is 

observed for all three values of Q (Figures 4, b, 4, d,  

4, f). For lossy compression with Q equal to 24 and 30 

(Fig. 4, b, 4, d), obvious increase in PSNR for both cases 

is observed, but maxima take place for smaller optimal β 
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values compared to the Frisco image in the same 

situation. Post-filtering after compression in OOP  

(Fig. 4, f) has the same properties as for Frisco 

(improvement of PSNR by 1.5 dB takes place). 
 

 
a                                              b 

 
c                                              d 

 
e                                              f 

 

Fig. 4. Dependencies of PSNR calculated between the filtered 
and true images for noise variance equal to 100  

for Q = 24 (a, b), Q = 30 (c, d), Q = 35 (e, f) 
 

3.2. Assessment using the HVS-based metrics 
Let us also use the HVS-based metrics that can better 

represent real image quality. The obtained dependencies 

for the same images are presented in Figures 5 and 6. 
 

 
a                                                 b 

 
c                                                d 

 

Fig. 5. Dependencies of PSNR–HVS–M: Q = 24 (a),  
Q = 35 (c) and FSIM: Q = 24 (b), Q = 35 (d) calculated 

between the post-filtered and true images Frisco for noise 
variance equal to 100 

 

 

Firstly, let us analyze the dependencies for the image 

Frisco (Fig. 5). As one can see, the results are similar to 

the PSNR metric. We observe a sufficient increase of the 

metric values due to post-filtering for both Q < QOOP (see 

data in Fig. 5, a) and Q = QOOP (Fig. 5, c). Under 

condition of setting the optimal β, the improvement of 

PSNR–HVS–M is the latter case exceeds 1 dB and it can 

be easily noticed by visual inspection. Again, optimal β 
decreases if Q becomes larger. 

The analysis for the FSIM metric confirms that 

image quality improves due to post-filtering. For Q = 24, 

FSIM = 0,937 after compression and 0,974 after post-

filtering; for Q = 35, FSIM = 0,958 after compression 

and 0,964 after post-filtering. Keeping in mind the 

nonlinearity of this metric, these are significant 

improvements. 

Analysis of results for the fr03 image (Fig. 6) shows 

similar tendencies – improvement is observed for both 

test images compressed with different Q for both PSNR–

HVS–M and FSIM metrics (after compression with 
Q = 24, FSIM = 0,972; for Q = 35, FSIM = 0,97). 

 

 
a                                                   b 

 
c                                                d 

 

Fig. 6. Dependencies of PSNR–HVS–M (a, c) and FSIM (b, d) 

calculated between the post-filtered and true images fr03  
for noise variance equal to 100 

 

Summarizing the obtained results, the following 

intermediate conclusion can be drawn: post-filtering of 
lossy compressed noisy images seems reasonable since 

the improvement in quality can be obtained not only for 

relatively small values of Q (that are associated with 

rather small compression ratios) but also for Q values 

corresponding to OOP and its neighborhood. But here it 

is worth noting that with approaching Q for OOP, the 

optimal value of β parameter of the DCT filter is shifted 

to smaller values. As the result, it is recommended to use 

β from 1.5 to 2.5 depending on CCP used for lossy 

compression. 

 

3.3. Combined dependencies of HVS-based metric 

and visual analysis 

The next step is verifying the main observations 

using other values of noise variance. This time, we 

consider noise variance equal to 200. The obtained 

dependencies are presented in Fig. 7.  
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a                                              b 

 
c 

Fig. 7. 2D dependencies of PSNR (a), PSNR–HVS–M (b)  
and FSIM (c) on Q and β 

 

This time the obtained curves were represented as 

functions of two parameters to get surfaces 

(dependencies of metrics on two parameters). All three 

metrics have the same behavior: there is optimal β that 

decreases if Q increases; besides, the maximum value of 

the metric decreases if Q increases. This decrease is not 

too rapid. One also needs to admit that for the PSNR 

metric the peak (or maximum) is more obvious. 

Let us give some examples of the results of our post-
filtering approach. Fig. 8, a presents the noise-free test 

image Frisco, Fig. 8, b shows the same image corrupted 

by AWGN with a variance equal to 100. Noise is clearly 

seen, especially in homogeneous image regions. Thus, 

the image was compressed with Q = 27 (Fig. 8, c) and 

filtered with β = 2.3 (Fig. 8, d).  
 

  
a                                                         b 

  
c                                                         d 

Fig. 8. Comparison of noise-free image (a), noisy with variance 
equal to 100 (b), compressed image with Q = 27, and filtered 

by DCT filter with β = 2.3 

 

From Fig. 8, c–d it is seen that noise is sufficiently 

suppressed whilst the useful information (edges, 

textures, small-sized objects) is well preserved. That 

makes this post–filtering approach helpful for 

applications that require not only a large compression 

ratio but also better image quality compared to the usual 

lossy compression of noisy images. 

 

4. Conclusions and future work 

 
The task of post-filtering lossy compressed images 

corrupted by AWGN is considered. The post-filtering 

brings specific features. It has been shown that the 

positive impact of post-filtering according not only to 

standard criteria such as PSNR but also according to 

HVS-based metrics such as PSNR–HVS–M and FSIM is 

observed. This increase is quite large and it exceeds 1 dB 

for PSNR and PSNR–HVS–M metrics for Q = QOOP and 

can be up to 7–9 dB for Q = 24, i.e. if visually lossless 

compression is performed. In Q = 24 or slightly larger, 

then optimal β is about 2.3–2.5, if compression is done 

with Q about QOOP, then optimal β should be about 2.  
In the future, it seems reasonable to test this approach 

for more images and try to implement this approach to 

multichannel images. Moreover, it seems possible to 

predict which filter value to use to get the best results in 

terms of image quality. 
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Збільшення кількості зображень та їх розмірів є загальною тенденцією на сьогодні, але це веде до певних проблем із 
зберіганням і передачею такої кількості даних. Поширеним способом розвʼязання цієї проблеми є використання стиснення з 
втратами, яке має не тільки більший коефіцієнт стиснення порівняно з підходами без втрат, але також має декілька 
особливостей. По-перше, спостерігається специфічний ефект фільтрації шуму. По-друге, може існувати оптимальна робоча 
точка (OРТ), де якість стисненого зображення ближче до відповідного зображення без шумів згідно з вибраним показником 

якості. У цьому випадку варто стиснути це зображення в області OРТ. Ці особливості були раніше вивчені і показали 
позитивні результати підвищення якості зображення. Але варто перевірити, чи можна додатково покращити якість шляхом 
використання пост-фільтрації. У цьому дослідженні ми намагаємося відповісти на запитання: “чи варто фільтрувати 
зображення після стиснення з втратами, особливо в околі ОРТ? Яку користь це може принести в сенсі якості зображення?”. 
Дослідження проводиться для BPG-кодеру та фільтру на основі ДКП для адитивного білого шуму, зосередившись головним 
чином на однокомпонентних  зображеннях у градаціях сірого. Якість зображення оцінюється кількома показниками, такими 
як PSNR, PSNR–HVS–M і FSIM. Продемонстровано можливе підвищення якості зображення за допомогою пост-фільтрації 
та надано рекомендації щодо кращого параметра фільтру. 
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