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An increase in the number of images and their average size is the general trend nowadays. This increase leads to certain problems
with data storage and transfer via communication lines. A common way to solve this problem is to apply lossy compression that
provides sufficiently larger compression ratios compared to lossless compression approaches. However, lossy compression has
several peculiarities, especially if a compressed image is corrupted by quite intensive noise. First, a specific noise-filtering effect is
observed. Second, an optimal operational point (OOP) might exist where the quality of a compressed image is closer to the
corresponding noise-free image than the quality of the original image according to a chosen quality metric. In this case, it is worth
compressing this image in the OOP or its closest neighborhood. These peculiarities have been earlier studied and their positive
impact on image quality improvement has been demonstrated. Filtering of noisy images due to lossy compression is not perfect.
Because of this, it is worth checking can additional quality improvement be reached using such an approach as post-filtering. In this
study, we attempt to answer the questions: “is it worth to post-filter an image after lossy compression, especially in OOP’s
neighborhood? And what benefit can it bring in the sense of image quality?”. The study is carried out for better portable graphics
(BPG) coder and the DCT-based filter focusing mainly on one-component (grayscale) images. The quality of images is characterized
by several metrics such as PSNR, PSNR-HVS-M, and FSIM. Possible image quality increasing via post-filtering is demonstrated and
the recommendations for filter parameter setting are given.
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1. Introduction It is worth stressing that compression should not be
only intended on reaching this trade-off, but it also has to
The technology of sensors’ design and manufacturing take into account the peculiarities of images and possible
has been rapidly developing in recent years (Mehmood noise presence (Penna et al., 2007 and Kovalenko et al.,
et al., 2022 and Bazi et al., 2022). That has led not only  2021). This is due to the fact that, in practice, it is hard to
to the better spatial resolution of images but also find images without noise (although this noise can be
considerable size increase of acquired images (Ma et al., invisible for low intensities), especially in remote
2015). In addition, it has become popular to get multiple sensing (RS) images that are often corrupted by a rather
images of the same terrain, which has resulted in even intensive noise.
greater problems in the transmission and storage of In the case one wants to provide a high quality of
information data (Schowengerdt et al., 2007 and Blanes lossy compressed noisy images with a simultaneous
et al.,, 2014). A common way to solve this problem is to desire to have a sufficiently high CR, compression in the
apply some image compression techniques. so-called optimal operation point (OOP) can be a
In general, the use of lossless and lossy compression prominent solution. OOP is such a parameter of a coder
approaches is possible (Hussain et al., 2018). An that provides the minimal difference (according to some
advantage of lossless compression is that it introduces no quality metric) between the compressed and noise-free
distortions into data. However, the compression ratio image. Previously, we have demonstrated the benefits of
(CR) attained by lossless compression techniques is using the OOP parameter in the lossy compression of
often too small (not appropriate for many applications), noisy images. In many cases, it worked well and showed
especially for images corrupted by noise. Lossy good results in terms of improving image quality
compression allows for reaching larger and variable CR (Kovalenko et al., 2022).
values. Meanwhile, a larger CR results in larger For some applications, it is necessary to provide even
distortions introduced (Ponomarenko et al., 2005). Then, better quality. Then, such an approach as compressed
a reasonable trade-off has to be found and provided image post-filtering can be applied (Simmer et al.,
(Christophe et al., 2011). 2001). By post-filtering, we mean that some denoising

technique (in our case, it is the DCT-based filter) is
—_— ) applied after the compression of a noisy image in the
E-mail: b.kovalenko@Kkhal.edu OOP neighborhood. Although lossy compression of the
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noisy image in this case already provides quality
improvement (if OOP exists), it is reasonable to check
can the post-filtering with properly adjusted parameters
further improve the quality and how large that
improvement can be. A side task is also the optimal or
quasi-optimal setting of the post-filter parameters.

This paper concentrates on post-filtering by the DCT-
based filter (Ponomarenko et al., 2011) of noisy
grayscale images after lossy compression by BPG (better
portable graphics) coder (Bellard et al., 2018). To
estimate the improvement in image quality, such
quantitative criteria as peak signal-to-noise ratio
(PSNR) and visual quality metrics PSNR-HVS-M
(Ponomarenko et al., 2007) and FSIM (Zhang et al.,
2011) are employed.

2. Experiment setup

2.1. Image/noise properties and the used metrics

As test images, two typical representatives of remote
sensing data have been taken — these are images Frisco
and frO3 presented in Fig. 1. The first image is an
example of simple structure images whilst the second
one relates to middle complexity images. As has been
mentioned in Introduction, in practice it is difficult to
acquire noise-free images, especially RS ones. Noise can
appear in images due to many factors; it can be visible or
invisible (Chatterjee et al., 2010). Visible noise has an
essential impact on image visual quality and
classification accuracy. That is why, we concentrate here
on the case of visible noise typical, e.g., for images
acquired in bad illumination conditions.

Fig. 1. Used test images Frisco (a), fr03 (b)

In this work, we consider additive white Gaussian
noise (AWGN), which is known to be the simplest noise
model and can be a good starting point in research.
According to this model, one has

1§ =15 +ny, @
where 1]} denotes the noisy ij-th pixel value, I is the
true ij-th pixel value, njj is the value of AWGN having
zero mean and variance % Below we assume that noise
variance is already known or accurately pre-estimated
(Colom et al., 2014 and Selva et al., 2021).

To estimate the quality of noisy or processed images,
one can use various metrics. One of the conventional
metrics is the peak signal-to-noise ratio (PSNR)
calculated for the original (noisy) image as
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where |, J define image dimensions and it is supposed
that the image is represented as 8-bit data.

It is also useful to estimate the image quality by some
metric that takes into account the human visual system
(HVS) and peculiarities of image understanding based
on its low-level features. These can be, e.g., the visual
quality metrics PSNR-HVS-M (Ponomarenko et al.,
2007) or FSIM (Zhang et al., 2011). In particular,

; [ 2552 ]
PSNR —HVS-M" =10l00,y| —————+ |
MSE-HVS-M

where MSE-HVS-M" is calculated in a set of 8x8 pixel
blocks considering different sensitivity of HVS to
distortions in different spatial frequencies as well as the
masking effect (Ponomarenko et al., 2007).

Feature-SIMilarity (FSIM) is designed for grayscale
images (or the luminance components of color images)
and it represents the HVS-based metrics as well (Zhang
et al., 2011). The underlying principle of FSIM is that
HVS perceives an image mainly based on its salient low-
level features. Specifically, two kinds of features, phase
congruency (PC) and gradient magnitude, are used in
FSIM, and they take into account complementary aspects
of the image’s visual quality. The PC value is employed
to weigh the contribution of each point to the overall
similarity of the two images.

2.2. Used coder and filter

In our study, we use the BPG encoder that aims to
replace the old JPEG format due to considerably better
performance in the sense of higher quality and/or lower
size of compressed data. This encoder has established
itself as the one able to deal with most chroma formats
(grayscale, YChCr 4:2:0, 4:2:2, 4:4:4) and it has also
proved to have OOP in the case of lossy compression for
each of these formats (Kovalenko et al., 2022). These
facts make this encoder extremely suitable for our
purposes. Also note that the BPG encoder is simple to
use — it has compression controlling parameter (CCP) Q,
used internally to control the compression ratio and
image quality. Q can vary in the range of 1 to 51
(Bellard et al., 2018) where larger Q results in a higher
CR and corresponds to lower visual quality (in the case
of compressing the noise-free images).

As was also mentioned, this paper focuses on the
DCT-based filter that has been chosen based on several
reasons. First, the DCT-based filters possess efficiency
close to the best existing filters according to PSNR
(Lukin et al., 2011). Second, they are characterized by
efficient noise suppression in homogeneous image
regions, excellent texture preservation, and good
preservation of edges and details. Third, they can be
easily adapted to signal-dependent and spatially
correlated noise (Fevralev et al., 2011). Fourth, filter
properties can be easily controlled and varied by a single
parameter B used in threshold setting.

To get a better understanding of these properties, let
us briefly remind the basic principles of DCT-based
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filtering. Denoising can be carried out in non-
overlapping or overlapping blocks of, generally,
arbitrary size and shape (Foi et al., 2007). Below, for
simplicity and for providing high computational
efficiency, we consider only the case of fixed 8x8
blocks. Direct DCT is carried out in each block. Then, a
thresholding operation is applied to DCT coefficients
except for the DC ones. Inverse DCT is then performed
in blocks. Soft, hard, and combined thresholding can be
used. Here, we apply hard thresholding and full
overlapping of blocks. For optimal denoising according
to PSNR, B should be about 2.7 whilst for providing
the optimal visual quality it has to be slightly smaller,
about 2.4 (Ponomarenko et al, 2011).

2.3. Fundamentals of lossy compression in OOP

Because this study aims to analyze the potential of
post-filtering the noisy images that have been
compressed in a lossy manner, it is reasonable to remind
the main peculiarities of this type of compression. It has
been already mentioned that, due to lossy compression, it
is possible to reach an optimal operational point (if it
exists), the ways to do this were described in our
previous work (Kovalenko et al., 2022). To illustrate the
phenomenon of OOP, the following method can be
applied: in simulations, when one has a noise-free image,
he/she adds AWGN to it, and applies lossy compression.
Then, it is possible to calculate metrics for the whole
range of Q values between a compressed image and the
corresponding noise-free one. Examples of such
dependencies on Q for six test images are presented in
Fig. 2. OOP exists for five out of six images according to
PSNR and only for one image according to the metric
PSNR-HVS-M. There are cases when the metric
steadily becomes worse (reduces) if Q increases. Then,
OOP does not exist and it is necessary to understand
what happens with compressed image post-filtering in
such situations.
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Fig. 2. Dependencies PSNR(Q) (a) and PSNR-HVS-M (Q) (b)
for noise variance equal to 100
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Fig. 3. Comparison between noisy (a) image and the image
compressed in OOP (b)
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The difference in quality can be noticed by
comparing the noisy image and the one compressed in
OOP placed side by side in Fig. 3. The filtering effect,
which was mentioned earlier, is clearly Vvisible,
especially in homogeneous regions of the image. From
Fig. 2, it can be seen that the improvement in quality is
observed not only directly in the OOP, but also in its
neighborhood.

3. Results of post-filtering after lossy compression in
OOP and its neighborhood

3.1. Assessment using the PSNR metric

The noise-free image was corrupted by the noise with
a variance equal to 100, which is a good starting point
for further research; after this, the noisy image was
compressed by the BPG coder with Q in the limits from
24 to 35 (Q can be only an integer, Q = 24 corresponds
to the case when the distortions due to lossy compression
are invisible). After decompression, each of the obtained
images was filtered by the DCT-filter with several values
of B. Thus, let us analyze the compressed image quality
after filtering using the PSNR metric. The obtained
dependencies are presented in Fig. 4 for three values
of Q.

Recall here that Q=24 corresponds to visually
lossless compression, Q =30 relates to slightly visible
distortions and Q =35 is the (possible) OOP (see the
plots in Fig. 2). Let us start our analysis with the Frisco
image. From the obtained curves, it can be seen that
there is a clear increase in quality for Q equal to 24
(Fig. 4, a, PSNR after just compression was about 28 dB,
Fig. 2, a). The maximum PSNR (37.4 dB) for this case is
at B = 2.8, after which the overall image quality starts to
decrease monotonically, but it is still better compared to
compressed but not post-filtered one. The next case is
Q =30 (Fig. 4, ¢) that is a little closer to OOP (although
PSNR after compression is still about 28 dB, Fig. 2, a).
The overall situation is still the same except for slightly
smaller values of optimal § and the value of PSNR for it.
The most interesting situation deals with post-filtering
after compression in OOP (Fig. 4,¢e) where the
compressed image quality (PSNR is about 35.5 dB) is
already increased compared to the noisy one. Even in
this case, the post-filtering can offer the quality increase
with maximum PSNR = 36.7dB for p=2. But it is
important to note that further increasing of 8 can lead to
decreasing the overall image quality compared to the
non-filtered one. In other words, p =2 allows to avoid
oversmoothing. The reason for decreasing optimal [ for
larger Q can be explained in another way. In fact, the
post-filter has to remove the residual noise having the
variance that is smaller than the variance of the original
noise. Then, a smaller threshold is needed for the DCT-
based filter, and this is achieved by setting a smaller f.

Mainly, the same tendencies are valid for the fr03
image. Note that, for this image, the OOP according to
PSNR is much less obvious (PSNR is about 28.7 dB,
Fig. 2,a). The improvement due to post-filtering is
observed for all three values of Q (Figures 4, b, 4, d,
4, f). For lossy compression with Q equal to 24 and 30
(Fig. 4, b, 4, d), obvious increase in PSNR for both cases
is observed, but maxima take place for smaller optimal 8
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values compared to the Frisco image in the same
situation. Post-filtering after compression in OOP
(Fig. 4,f) has the same properties as for Frisco
(improvement of PSNR by 1.5 dB takes place).
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Fig. 4. Dependencies of PSNR calculated between the filtered
and true images for noise variance equal to 100
forQ=24(a, b),Q=30(c,d),Q=35(e, f)

3.2. Assessment using the HVS-based metrics

Let us also use the HVS-based metrics that can better
represent real image quality. The obtained dependencies
for the same images are presented in Figures 5 and 6.
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Fig. 5. Dependencies of PSNR-HVS-M: Q = 24 (a),
Q =35(c) and FSIM: Q = 24 (b), Q = 35 (d) calculated
between the post-filtered and true images Frisco for noise
variance equal to 100

Online ISSN 2313-2132

Firstly, let us analyze the dependencies for the image
Frisco (Fig. 5). As one can see, the results are similar to
the PSNR metric. We observe a sufficient increase of the
metric values due to post-filtering for both Q < Qoor (See
data in Fig. 5 a) and Q=Qoor (Fig. 5,c). Under
condition of setting the optimal B, the improvement of
PSNR-HVS-M is the latter case exceeds 1 dB and it can
be easily noticed by visual inspection. Again, optimal 3
decreases if Q becomes larger.

The analysis for the FSIM metric confirms that
image quality improves due to post-filtering. For Q = 24,
FSIM = 0,937 after compression and 0,974 after post-
filtering; for Q =35, FSIM =0,958 after compression
and 0,964 after post-filtering. Keeping in mind the
nonlinearity of this metric, these are significant
improvements.

Analysis of results for the fr03 image (Fig. 6) shows
similar tendencies — improvement is observed for both
test images compressed with different Q for both PSNR—
HVS-M and FSIM metrics (after compression with
Q =24, FSIM =0,972; for Q = 35, FSIM = 0,97).

Decompressed-24 1ro3

Decompressed-24 fr03
 PSNRHVSM FSiM

3 35 4 45 5 + 18 2 25 3
Bata Beta

Decompressed-35 03
FSiM

Fig. 6. Dependencies of PSNR-HVS-M (a, ) and FSIM (b, d)

calculated between the post-filtered and true images fr03
for noise variance equal to 100

Summarizing the obtained results, the following
intermediate conclusion can be drawn: post-filtering of
lossy compressed noisy images seems reasonable since
the improvement in quality can be obtained not only for
relatively small values of Q (that are associated with
rather small compression ratios) but also for Q values
corresponding to OOP and its neighborhood. But here it
is worth noting that with approaching Q for OOP, the
optimal value of B parameter of the DCT filter is shifted
to smaller values. As the result, it is recommended to use
B from 1.5 to 2.5 depending on CCP used for lossy
compression.

3.3. Combined dependencies of HVS-based metric
and visual analysis
The next step is verifying the main observations
using other values of noise variance. This time, we
consider noise variance equal to 200. The obtained
dependencies are presented in Fig. 7.
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Fig. 7. 2D dependencies of PSNR (a), PSNR-HVS-M (b)
and FSIM (c) on Q and

This time the obtained curves were represented as
functions of two parameters to get surfaces
(dependencies of metrics on two parameters). All three
metrics have the same behavior: there is optimal B that
decreases if Q increases; besides, the maximum value of
the metric decreases if Q increases. This decrease is not
too rapid. One also needs to admit that for the PSNR
metric the peak (or maximum) is more obvious.

Let us give some examples of the results of our post-
filtering approach. Fig. 8, a presents the noise-free test
image Frisco, Fig. 8, b shows the same image corrupted
by AWGN with a variance equal to 100. Noise is clearly
seen, especially in homogeneous image regions. Thus,
the image was compressed with Q =27 (Fig. 8, c) and
filtered with B = 2.3 (Fig. 8, d).

Fig. 8. Comparison of noise-free image (a), noisy with variance
equal to 100 (b), compressed image with Q = 27, and filtered
by DCT filter with p =2.3

From Fig. 8, c—d it is seen that noise is sufficiently
suppressed whilst the useful information (edges,
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textures, small-sized objects) is well preserved. That
makes this post-filtering approach helpful for
applications that require not only a large compression
ratio but also better image quality compared to the usual
lossy compression of noisy images.

4, Conclusions and future work

The task of post-filtering lossy compressed images
corrupted by AWGN is considered. The post-filtering
brings specific features. It has been shown that the
positive impact of post-filtering according not only to
standard criteria such as PSNR but also according to
HVS-based metrics such as PSNR-HVS-M and FSIM is
observed. This increase is quite large and it exceeds 1 dB
for PSNR and PSNR-HVS-M metrics for Q = Qoop and
can be up to 7-9 dB for Q =24, i.e. if visually lossless
compression is performed. In Q =24 or slightly larger,
then optimal P is about 2.3-2.5, if compression is done
with Q about Qoop, then optimal B should be about 2.

In the future, it seems reasonable to test this approach
for more images and try to implement this approach to
multichannel images. Moreover, it seems possible to
predict which filter value to use to get the best results in
terms of image quality.
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AHAJIIB TOTEHLIMHOI E®EKTHUBHOCTI [IOCT-®UILTPALIII 30BPAXEHB, YPAXKEHMX IIYMOM, IIICJIA
CTUCHEHHA 3 BTPATAMU

b. B. Kosanenko, B. C. PeGpos, B. B. JIykin

Kageopa ingopmayiiino-xomynixayiinux mexnonozii im. O. O. 3enencoroco, Hayionanvnuili aepoxocmiunuii ynieepcumem, 61070
Xaprxie, Ykpaina

301bIICHHST KITBKOCTI 300pa)keHb Ta 1X pO3MIpIB € 3arajbHOI0 TEHACHIIEI0 HAa ChOTOAHI, aje Ie Bele N0 IMEeBHHUX mpobiieM i3
30epiraHHsIM i mepeadero Takol KiTbKOCTi JaHuX. [lommpeHnM crioco0oM po3B’si3aHHs Li€l MpoOieMy € BUKOPHCTAHHS CTHCHEHHS 3
BTpaTaMH, SK€ Ma€ He TUIbKM OUThbIIMK Koe(illieHT CTHCHEHHs MOPIBHSAHO 3 MigxoAaMH Oe3 BTpaT, ajie TaKoXK Mae€ JeKijbKa
ocobnuBocteit. [To-niepie, criocrepiraerbes crienugiunmii edext dinprpauii nrymy. Ilo-apyre, Moxke icHyBaTH onTHMaibHa pododa
touka (OPT), ne sIKicTh CTHCHEHOr0 300paskeHHsI OJIVDKYE /10 BiAMOBIAHOTO 300pakeHHs O3 IIyMiB 3TiIHO 3 BUOPAHUM TTOKa3HHUKOM
SIKOCTi. Y I[bOMY BHINAJKY BapTO CTHCHYTH Iie 300pakenHs B obmacti OPT. Lli ocobmuBocti Oynu paHilie BHBYCHI 1 MMOKa3ayix
MO3UTHBHI PE3y/IbTATH MiIBUILECHHS SAKOCTI 300paXkeHHs. Ajie BapTO NEPEBIPUTH, YU MOXKHA JJOJATKOBO ITOKPAIUTH SKICTh IUIIXOM
BUKOPUCTaHHS mocT-QinbTpanii. Y [HbOMY JOCTI/KEHHI MH HamaraeMocs BIANOBICTM Ha 3alMTaHHSA: “du BapTo (ijabpTpyBaTH
300pakeHHs MiClIsl CTUCHEHHs 3 BTpaTaMu, ocoOuuBo B okoii OPT? SIky KopHCTh Lie MOXKe MPUHECTH B CEHCI SIKOCTI 300paXKeHHs ?”.
Hocunimpxenns npoBonutkes st BPG-konepy ta ¢insrpy Ha ocHoBi JIKII asist aauTUBHOrO 6110T0 1IyMY, 30CEpEIUBIIICH TOJIOBHUM
YUHOM Ha OJJHOKOMITOHEHTHUX 300pa)KCHHSX Y rpajauisx ciporo. SkicTh 300pakeHHs OLIHIOETHCS KiIbKOMa MTOKa3HUKAMHM, TAKUMH
sk PSNR, PSNR-HVS-M i FSIM. [IpogeMoHCTpOBaHO MOMKIIMBE MiZBUIIEHHS SKOCTI 300pa)KeHHs 3a JOMOMOro0 MocT-(iabTparii
Ta HaJIaHO PEKOMEHAIIIT II0J10 KPaloro napamerpa QinsTpy.

KiouoBi ciioBa: 300paykeHHst y rpajauisix Ciporo, CTHUCHEHHs! 300pakeHb i3 BTparaMu, OonTHMallbHa poboya Touka, koxep BPG,
noct-inbrparist, Gpinstp Ha ocHoBi JIKIL.
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