Urban thermal micro-mapping using satellite imagery and ground-truth measurements: Kyiv city area case study
DOI:
https://doi.org/10.36023/ujrs.2019.21.149Keywords:
city thermal regime, land surface temperature, thermal radiation emissivity, time seriesAbstract
The aim of this research is to enhance approaches existing for the assessment of cities thermal conditions under climate change impact by using multispectral satellite data for Kyiv city area. This paper describes the method and results of the Earth’s surface temperature (LST) and thermal emissivity calculation. Particularly, the thermal distribution was estimated based on spectral densities according to Planck’s law for “grey bodies” by using the Landsat-8 TIRS and Sentinel-2 MSI satellite imagery. Furthermore, the result was calibrated by ground data collected during the ground-truth measurements of the typical city surfaces temperature and thermal emissivity. The spatial resolution of the LST images obtained was enhanced by using the approach of subpixel processing, that is the pairs of invariant images shifted with subpixel accuracy. As a result, such an approach allowed to enhance the spatial resolution of the image up 46%, which is much higher than the potential performance of the thermal imaging sensors existing. The interrelation between the Earth’s surface type and the temperature was revealed by the results of the Sentinel-2A MSI image of 21 August 2017 supervised classification. Thus, the image was divided into the six major classes of the urban environment: building’s rooftops, roads surface, bare soil, grass, wood, and water. As a result, surfaces with vegetation much more cool next to artificial ones. The time-series analysis of 18 thermal images (Landsat TM and Landsat-8 TIRS) of Kyiv for the period from 6 Jun 1985 till 1 June 2018 was done for spatiotemporal changes investigation. Therefore, the sites of the LST thermal anomalies caused by landscape changes were developed. Among them are the sites of increased LST where thw “Olimpiyskiy” national sport center and adjacent parking was built and the site of decreased LST where the tram depot was liquidated and the territory was flooded.
References
Bottillo, S., Vollaro, A., Galli, G., Vallati, A. (2014). Fluid dynamic and heat transfer parameters in an urban canyon. Solar Energy. 99, 1–10. https://doi.org/10.1016/j.solener.2013.10.031
Chander, G., Markham, B. L., Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 113 (5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007
Denisik, G. I., Kyzyun, A. G. (2011). Residential landscapes: terms and concepts, their essence and legitimate use. Naukovi zapysky Vinnycjkogho peduniversytetu. Ser. Gheoghrafija. 22, 5–9. Retrieved from: http://nbuv.gov.ua/UJRN/Nzvdpu_geogr_2011_22_3. (in Ukrainian).
Gornyy, V. I., Kritsuk, S. G., Latypov, I. Sh., Tronin, A. A., Kiselev, A. V., Brovkina, O. V., Filippovich, V. E., Stankevich, S. A., Lubskii, N. S. (2017). Thermophysical properties of land surface in urban areas (by satellite remote sensing of Saint Petersburg and Kiev). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 14 (3), 51–66. (in Russian). https://doi.org/10.21046/2070-7401-2017-14-3-51-66
Gornyy, V. I., Lyalko, V. I., Kritsuk, S. G., Latypov, I. Sh., Tronin, A. A., Filippovich, V. E., Stankevich, S. A., Brovkina, O. V., Kiselev, A. V., Davidan, T. A., Lubskyi, N. S., Krylova, A. B. (2016). Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 13 (2), 176–191. (in Russian). https://doi.org/10.21046/2070-7401-2016-13-5-277-290
Hafner, J., Kidder, S. Q. (1998). Urban Heat Island Modeling in Conjunction with Satellite-Derived Surface/Soil Parameters. Journal of Applied Meteorology. 38, 448–465. https://doi.org/10.1175/1520-0450(1999)038<0448:UHIMIC>2.0.CO;2
Li, H., Meier, F., Lee, X., Chakraborty, T., Liud, J., Schaap, M., Sodoudi, S. (2018). Interaction between urban heat island and urban pollution island during summer in Berlin. Science of the Total Environment. 636, 818–828. https://doi.org/10.1016/j.scitotenv.2018.04.254
Nuruzzaman, Md. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures – A Review. International Journal of Environmental Monitoring and Analysis. 3 (2), 67–73. https://doi.org/10.11648/j.ijema.20150302.15
Piestova, I., Lubskyi, M., Svideniuk, M., Golubov, S. (2017, december). Thermal micro-mapping of urban area using infrared satellite imagery. Gheoprostir-2017: materialy mizhnarodnoji nauk.-tekhn. konf, (pp. 80–82), Kyiv: KNUBA. (in Ukrainian).
Piestova, I., Lubskyi, M., Svideniuk, M., Golubov, S., Sedlacek, P. (2018). Satellite Imagery Resolution Enhancement for Urban Area Thermal Micromapping. Central European Researchers Journal. 4 (1), 35–39.
Schwarz, N., Lautenbach, S., Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment. 115 (12), 3175–3186. https://doi.org/10.1016/j.rse.2011.07.003
Stankevich, S. A., Filippovich, V. E., Lubsky, N. S., Krylova, A. B., Kritsuk, S. G., Brovkina, O. V, Gornyi, V. I., Tronin A. A. (2015) Intercalibration of methods for restoring the thermodynamic temperature of the surface of an urbanized area based on materials of thermal space imagery. Ukrainskyi zhurnal dystantsiinoho zonduvannia Zemli. 7, 14–23. (in Russian). Retrieved from: https://ujrs.org.ua/ujrs/article/view/59/77
Stankevich, S. A., Lubskyi, M. S. (2018, April) Application of visible and NIR remote sensing data for deriving of Earth’s surface thermal fields of high spatial resolution. Proceedings of the XII conference Telecommunication problems 2018, pp. 329–331, Kyiv, Ukraine.
Stankevich, S. A., Pylypchuk, V. V., Lubskyi, M. S., Krylova, G. B. (2016). Evaluation of the accuracy of determining the temperature of artificial and natural earth surfaces based on the results of infrared satellite imagery. Kosmichna nauka i tekhnolohiia. 101 (4), 19–28. (in Ukrainian). https://doi.org/10.15407/knit2016.04.019
Tang, H., Li, Z.-L. (2014). Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. Berlin: Springer-Verlag.
Urroz, G. E. (2001). Time Series and Spatial Data Analysis with SciLab. Logan: InfoClearinghouse.
Downloads
Published
Issue
Section
License
Licensing conditions: the authors retain their copyrights and grant the journal the right of first publication of a work, simultaneously licensed in accordance with the Creative Commons Attribution License International CC-BY, which allows you to share the work with proof of authorship of the work and initial publication in this journal.
The authors, directing the manuscript to the editorial office of the Ukrainian Journal of Remote Sensing of the Earth, agree that the editorial board transfers the rights to protection and use of the manuscript (material submitted to the journal editorial board, including such protected copyright objects as photographs of the author, drawings, charts, tables, etc.), including reproduction in print and on the Internet; for distribution; to translate the manuscript into any languages; export and import of copies of the journal with the article of the authors for the purpose of distribution, informing the public. The above rights are transferred by the authors to the editors, without limitation of their validity, and in the territory of all countries of the world without limitation, including in Ukraine.
The authors guarantee that they have exclusive rights to use the submitted material. The editors are not liable to third parties for breach of data by the authors of the guarantees. The authors retain the right to use the published material, its fragments and parts for personal, including scientific and educational purposes. The rights to the manuscript are considered to be transferred by the authors of the editorial board from the moment of the publication of the issue of the journal in which it is published. Reprinting of materials published in the journal by other individuals and legal entities is possible only with the consent of the publisher, with the obligatory indication of the issue of the journal in which the material was published.