Estimation of mutual subpixel shift between satellite images: software implementation
DOI:
https://doi.org/10.36023/ujrs.2020.24.165Keywords:
satellite imagery, subpixel shift, software implementationAbstract
The special-purpose software implementation for estimating the subpixel shift between satellite images using advanced computer technology is described in this paper. The automatic calculation of the mutual subpixel shift between a pair of digital satellite images by correlation algorithm is performed. The proposed implementation was tested on a statistically representative number of satellite images and reached acceptable accuracy in determining their subpixel shift values.
References
Aydin, S. (2015). Software competences of geomatic engineering. International Journal of Geosciences, 6 (12), 62118.
Boreman, S. & Stevenson, R. (1998). Spatial resolution enhancement of low-resolution image sequences: A comprehensive review with directions for future research. Laboratory for Image and Signal Analysis (LISA) Technical Report. Notre Dame: University of Notre Dame.
Butyrin, S.A. (2015). A method for transformation of the space photos obtained at the distributed scanning optoelectronic observations. Bulletin of Samara Scientific Center of the RAS, 17 (6), 702-706. (in Russian).
d’Angelo, P. (2013). Automatic orientation of large multitemporal satellite image blocks. Proceedings of International Symposium on Satellite Mapping Technology and Application (ISSMTA2013), 1-7. Nanjing: ISPRS.
Dawn, S., Saxena, V. & Sharma, B. (2010). Remote sensing image registration techniques: A survey. Proceedings of the 4th International Conference on Image and Signal Processing, (ICISP 2010), 103-112. Québec: Springer. https://doi.org/10.1007/978-3-642-13681-8_13
Ferraris, V., Dobigeon, N., Wei, Q. & Chabert, M. (2018). Detecting changes between optical images of different spatial and spectral resolutions: A fusion-based approach. IEEE Transactions on Geoscience and Remote Sensing, 56 (3), 1566-1578. https://doi.org/10.1109/tgrs.2017.2765348
Fetisov, D.V., Kolesenkov, A.N., Babaev, S.I. & Fetisova, T.A. (2019). Development of a model for subpixel processing of aerospace images during remote sensing of the Earth. Science Bulletin of the NSTU, 2 (75), 89-100. (in Russian). https://doi.org/10.17212/1814-1196-2019-2-89-100
Hong, A.-N. & Woo, D.-M. (2014). Fast stereo matching of high resolution satellite images using a new tilting technique. Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET’2014), 91-95. London: IIE. https://doi.org/10.15242/iie.e0514561
Kwan, C. (2018). Image resolution enhancement for remote sensing applications. Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, 12. Las Vegas: ACM. https://doi.org/10.1145/3271553.3271590
Milanfar, P. (Ed.). (2010). Super-Resolution Imaging. Boca Raton: CRC Press.
Moigne, J.L., Netanyahu, N.S. & Eastman, R.D. (Eds). (2011). Image Registration for Remote Sensing. Cambridge: Cambridge University Press.
Popov, M.A., Stankevich, S.A. & Shklyar, S.V. (2015). An algorithm for resolution enhancement of subpixel displaced images. Mathematical Machines and Systems, 1, 29-36. (in Russian).
Reddy, B.S. & Chatterji, B.N. (1996). An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing, 5 (8), 1266-1271. https://doi.org/10.1109/83.506761
Stankevich, S.A. (1994). The models for segmented discrete images automatic matching. Proceedings of the 2nd All-Ukrainian International Conference on Signal/Image Processing and Pattern Recognition, 167-169. Kiev: Institute of Cybernetics NAS of Ukraine. (in Ukrainian).
Stankevich, S.A., Shklyar, S.V. & Lubskyi, N.S. (2013). Aerial imaging spatial resolution enhancement based on subpixel image registration. Proceedings of Aviation Research Institute, 9 (16), 125-132. (in Ukrainian).
Stankevich, S.A., Shklyar, S.V. & Tyagur, V.M. (2013). Satellite imagery resolution enhancement using subpixel frames acquisition. Journal of Information, Control and Management Systems, 11 (2), 135-144.
Vandewalle, P., Süsstrunk, S. & Vetterli, M. (2003). Superresolution images reconstructed from aliased images. Proceedings of the SPIE, 5150, 1398-1405. https://doi.org/10.1117/12.506874
Voronin, E.G. (2017). On the displacements of the contours of the optic-electronic space images. Causes and evaluation of offsets. Geodesy and Cartography, 78 (5), 34-41. (in Russian). https://doi.org/10.22389/0016-7126-2017-923-5-34-41
Young, S.S., Driggers, R.G. & Jacobs, E.L. (2008). Signal Processing and Performance Analysis for Imaging Systems. Norwood: Artech House.
Zhu, L., Erving, A., Koistinen, K., Nuikka, M., Junnilainen, H., Heiska, N. & Haggrén, H. (2008). Georeferencing multi-temporal and multi-scale imagery in photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B5), 225-230.
Downloads
Published
Issue
Section
License
Licensing conditions: the authors retain their copyrights and grant the journal the right of first publication of a work, simultaneously licensed in accordance with the Creative Commons Attribution License International CC-BY, which allows you to share the work with proof of authorship of the work and initial publication in this journal.
The authors, directing the manuscript to the editorial office of the Ukrainian Journal of Remote Sensing of the Earth, agree that the editorial board transfers the rights to protection and use of the manuscript (material submitted to the journal editorial board, including such protected copyright objects as photographs of the author, drawings, charts, tables, etc.), including reproduction in print and on the Internet; for distribution; to translate the manuscript into any languages; export and import of copies of the journal with the article of the authors for the purpose of distribution, informing the public. The above rights are transferred by the authors to the editors, without limitation of their validity, and in the territory of all countries of the world without limitation, including in Ukraine.
The authors guarantee that they have exclusive rights to use the submitted material. The editors are not liable to third parties for breach of data by the authors of the guarantees. The authors retain the right to use the published material, its fragments and parts for personal, including scientific and educational purposes. The rights to the manuscript are considered to be transferred by the authors of the editorial board from the moment of the publication of the issue of the journal in which it is published. Reprinting of materials published in the journal by other individuals and legal entities is possible only with the consent of the publisher, with the obligatory indication of the issue of the journal in which the material was published.