The result of the comparative use of OCO-2 information to find the relationship between changes in the atmospheric concentration of CO2 and air temperature in the Argentine Islands and Ukraine.

Authors

  • Igor Artemenko Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-4386-3098

DOI:

https://doi.org/10.36023/ujrs.2021.8.4.204

Keywords:

satellite data, climate change, air temperature, CO2 concentrations, polar zones, anthropogenic impact

Abstract

The results of comparative analysis of data of data of changes CO2 concentrations in the atmosphere over the polar regions adjacent to the "Akademik Vernadsky" station (the size of the study area 1.5° × 1.5°, or approximately 166 km by 75 km) were obtained satellite Orbiting Carbon Observatory (OCO-2) and air temperature according to ground meteorological observations at the "Akademik Vernadsky" station for 2014-2020. From obtained graph, we can see that the air temperature and CO2 concentration in the atmosphere over the study area tend to increase slowly. In addition, the analysis of the above results showed that in this way it is possible to determine the integrated trends in the impact of greenhouse gas content in the atmosphere on air temperature. A comparative analysis of data of data of changes CO2 concentrations according to OCO-2 between regions where there is a direct anthropogenic impact (Ukraine) and the region where anthropogenic impact is minimized (areas adjacent to the "Akademik Vernadsky" station) for 2014-2020. It was found that CO2 concentrations over areas with direct anthropogenic impact are growing much faster than over areas where there is no such impact at all. However, we see that CO2 concentrations tend to increase in both cases. Based on the obtained results, it was determined that conducting a comprehensive, simultaneous and consistent with satellite observations measurements of various series of variables, will provide an opportunity to optimize information of changes in climatic parameters (air temperature) in the polar regions.

References

Bao, T., Zhu, R., Li, X., Ye, W., Cheng, X. (2018). Effects of multiple environmental variables on tundra ecosystem respiration in maritime Antarctica. Scientific reports, 8(1), 12336. https://pubmed.ncbi.nlm.nih.gov/30120277/.

Buchwitz M. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models / Buchwitz M., de Beek R., Burrows J. P., Bovensmann H., Warneke T., Notholt J., Meirink J. F., Goede A. P., Bergamaschi H., Korner P., Heimann M., and Schulz A.// Atmos. Chem. Phys. – 2005. – №5. 94-962 pp. https://acp.copernicus.org/articles/5/941/2005/acp-5-941-2005.html

Buchwitz M. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results, in: Remote Sensing of Clouds and the Atmosphere VIII / Buchwitz M., Burrows J. P. // Proceedings of SPIE. – 2004 ¬ №5235. 375-388 pp. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5235/1/Retrieval-of-CH4-CO-and-CO2-total-column-amounts-from/10.1117/12.514219.full

Dohovir pro Antarktyku, 1992: https://zakon.rada.gov.ua/laws/show/995_224?lang=uk#Text

Edward T. Olsen AIRS Version 5 Release Tropospheric CO2 Products // Jet Propulsion Laboratory, California Institute of Technology. –2009. – 34 p. https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/AIRS-V5-Tropospheric-CO2-Products.pdf

Goosse, H. (2015). Climate System Dynamics and Modelling. Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781316018682

Crisp, D., Bosch, H., Brown, L., Castano, R., Christi, M., Connor, B., Frankenberg, C., McDuffie, J., Miller, C. E., Natraj, V., O’Dell, C., O’Brien, D., Polonsky, I., Oyafuso, F., Thompson, D., Toon, G., and Spurr, R. (2010). OCO (Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis, Tech. Rep. OCO D-65488, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, version 1.0 Rev 4, https://disc.gsfc.nasa.gov/information/documents?title=OCO-2%20Documents, (last access: January 2012).

Crisp, D., Fisher, B. M., O’Dell, C., Frankenberg, C., Basilio, R., Bosch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O’Brien, D., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L. (2012). The ACOS XCO2 retrieval algorithm, Part 2: Global XCO2 data characterization, Atmos. Meas. Tech. Discuss., 5, 1– 60. https://amt.copernicus.org/articles/5/687/2012/amt-5-687-2012.pdf.

Hall, J. L., Newton, R. J., Witts, J. D., Francis, J. E., Hunter, S. J., Jamieson, R. A., & Haywood, A. M. (2018). High benthic methane flux in low sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic bivalves. Earth and Planetary Science Letters, 497, 113-122. https://www.sciencedirect.com/science/article/pii/S0012821X18303534?via%3Dihub

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf

Kostyuchenko Yu. V., Movchan D., Artemenko I., Kopachevsky I. (2016). Stochastic Approach to Uncertainty Control in Multiphysics Systems: Modeling of Carbon Balance and Analysis of GHG Emissions Using Satellite Tools. In: Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics, ed. by Mangey Ram and J. Paulo Davim, IGI Global, USA, pp. 350-378, doi: https://doi.org/10.4018/978-1-5225-1639-2.ch017

Kostyuchenko Yu. V., Yuschenko M., Elistratova L., Artemenko I. (2020). Multi-Model Approach in the Risk Assessment Tasks with Sattelite Data Utilization. In Recent Advances in Mathematics for Engineering , ed. by Mangey Ram, Series: Mathematical Engineering, Manufacturing, and Management Sciences, CRC Press, Taylor&Francis Group. doi: https://doi.org/10.1201/9780429200304-3

Kozlova A., Elistratova L., Kostyuchenko Yu.V., Apostolov A., Artemenko I. (2019) Multiparametric Modeling of Carbon Cycle in Temperate Wetlands for Regional Climate Change Analysis Using Satellite Data. In: Advances in Applied Mathematical Analysis and Applications, Mathematical and Engineering Sciences Series, ed. by Mangey Ram& Tadashi Dohi, P.51-94, River Publishers, Denmark, ISBN: 9788770221108.

https://www.riverpublishers.com/book_details.php?book_id=750

Lyalko, V. I. (Ed.). (2015). Greenhouse effect and climate changes in Ukraine. Kyiv: Naukova dumka. ISBN 978-966-00-1526-5. (in Ukrainian)

Lyalko, V. I., Kostyuchenko, Yu. V., Movchan, D. M., Sakhatsky, A. I., Shportuk, Z. M., Sibirtseva, O. N. … Artemenko, I. G. (2012). Estimation of anthropogenic and natural sources of greenhouse gases over Uкraine using remote sensing data. Earth Systems Change over Eastern Europe. 3, 93–128

NOAA, 2016. https://www.noaa.gov/south-pole-last-place-on-earth-to-pass-global-warming-milestone

O’Dell, C. W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D. (2012). The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99–121, doi: https://doi.org/10.5194/amt-5-99-2012

O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A. (2018). Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, https://doi.org/10.5194/amt-11-6539-2018.

Park, W., & Latif, M. (2019). Ensemble global warming simulations with idealized Antarctic melt water input. Climate Dynamics, 52(5-6), 3223-3239. https://doi.org/10.1007/s00382-018-4319-8

Popov, M., Stankevich, S., Kostyuchenko, Y.V., Kozlova, A.A. (2019). Analysis of Local Climate Variations Using Correlation between Satellite Measurements of Methane Emission and Temperature Trends within Physiographic Regions of Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol.4. No.2. P.276-288. https://ijmems.in/assets/23-ijmems-18-277_vol.-4%2c-no.-2%2c-276%e2%80%93288%2c-2019.pdf

Protokol pro okhoronu navkolyshnoho seredovyshcha do Dohovoru pro Antarktyku, 2005: https://zakon.rada.gov.ua/laws/show/995_645#Text

Schneising O. Three years of greenhouse gas column–averaged dry air mole fractions retrieved from satellite – Part 2: Methane / Schneising O., Buchwitz M., Burrows J. P., H. Bovensmann, P. Bergamaschi and W. Peters // Atmos. Chem. Phys. – 2009. – №9. 443-465 pp. https://acp.copernicus.org/articles/9/443/2009/

South Pacific Nuclear Free Zone Treaty, 1968. https://www.nonproliferation.org/wp-content/uploads/2013/12/nwfz_treaty_rarotonga_south_pacific.pdf

State Institution National Antarctic Scientific Center (NASC of Ukraine). Official website: http://meteodata.uac.gov.ua

The Antarctic Treaty, 1959. https://www.state.gov/antarctic-treaty/

Turner, J., S.R. Colwell, G.J. Marshall, T.A. Lachlan-Cope, A.M. Carelton, P.D. Jones, V. Lagun, P.A. Reid,. Iagovkina S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25: 279-294. http://aari.aq/publication/climate_change/climate_change.pdf

Turner, J., Gareth J., Marshall,K., Clem,S., Colwell,T., Phillips S., Hua Lu (2019) Antarctic temperature variability and change from station data Internation. Journal of Climatology. https://doi.org/10.1002/joc.6378

VanWessem, J. M., JanVanDeBerg, W., Noël, B. P., VanMeijgaard, E., Amory, C., Birnbaum, G., Ligtenberg, S. R. (2018). Modelling the climate and surface mass balance of polaricesheetsusing RACMO2: Part 2: Antarctica (1979-2016). Cryosphere, 12(4), 1479-1498.

Published

2021-12-10

Issue

Section

Techniques for Earth observation data acquisition, processing and interpretation